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Abstract—This study presents an empirical comparison of four 
divide-and-conquer sorting algorithms: Standard Quick Sort, 
Hybrid Quick Sort (median-of-three pivot with insertion-sort cutoff 
at 10 elements), Top-Down Merge Sort (with insertion cutoff at 32), 
and Bottom-Up Merge Sort across four synthetic data patterns 
(random, ascending, descending, partially sorted) and three input 
sizes (500, 10,000, 100,000). Implementations in CPython 3.x were 
instrumented to count element comparisons and measure wall-
clock execution time using time.perf_counter() (ms). Results show 
that Standard Quick Sort excels on random data but degrades to 
O(n²) on sorted inputs (RecursionError beyond n = 500). Hybrid 
Quick Sort mitigates worst-case behavior, reducing comparisons by 
~11% at n = 100,000 for only ~8% slower runtimes. Both Merge 
Sort variants maintain stable Θ(n log n) performance with higher 
constant overheads. These findings illuminate trade-offs between 
average-case speed, worst-case robustness, and constant factors, 
offering practical guidance for algorithm selection in real-world 
scenarios. 
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I.  INTRODUCTION 

Sorting is a foundational task in computer science, where 
the choice of algorithm impacts both average-case speed and 
worst-case behavior. This study empirically compares four 
divide-and-conquer sorting algorithms implemented in 
CPython 3.x: 

 Standard Quick Sort: uses a Lomuto partition with 
the last element as pivot, offering average Θ(n log n) 
performance but suffering Θ(n²) worst-case time on 
skewed inputs. 

 Hybrid Quick Sort: enhances standard Quick Sort by 
selecting the median of the first, middle, and last 
elements as pivot and switching to insertion sort when 
subarray size ≤ 10 to reduce recursion overhead. 

 Top-Down Merge Sort: recursively divides the array 
until subarrays ≤ 32 elements, then applies insertion 
sort before merging; it guarantees Θ(n log n) time and 
stability, using O(n) auxiliary space. 

 Bottom-Up Merge Sort: iteratively merges runs of 
doubling width, with an insertion-sort cutoff at 32, 
delivering the same stable Θ(n log n) bound without 
recursion. 

We evaluate these algorithms on four synthetic data 
patterns—random, ascending-sorted, descending-sorted, and 
partially sorted (95% sorted prefix)—across input sizes of 500, 
10,000, and 100,000 elements. We measure wall-clock 
execution time (time.perf_counter(), ms) and count element 
comparisons to reveal trade-offs between constant factors, 
average-case speed, and worst-case robustness. 

This paper is organized as follows: Section II reviews 
theoretical backgrounds; Section III details the implementation 
and experimental setup; Section IV presents and analyzes 
results; Section V concludes and suggests future work. 

II. THEORETICAL BASIS 

A. Quick Sort (Regular) 

Standard Quick Sort uses a Lomuto partition scheme with 
the last element as pivot [6]. During partitioning, all elements ≤ 
pivot go left, the rest go right, then recursion sorts each side. 
The average time is Θ(n log n) (T(n) ≈ 2 T(n/2) + O(n)), but a 
worst-case pivot (always smallest/largest) yields Θ(n²) 
comparisons due to unbalanced splits [1]. The algorithm is in-
place, not stable, and requires O(log n) auxiliary stack space. 

In this study, the conventional Quick Sort is implemented 
with the pivot consistently taking the last element of the 
subarray. The partitioning scheme employed is the Lomuto 
partition, where the pivot element (the last one) is swapped to 
ensure it is positioned at the end of the left partition. The 
number of comparisons counted includes each instance where 
the algorithm compares two elements (for example, during the 
partitioning loop when comparing an element with the pivot). 
Quick Sort is not stable (it does not maintain the order of equal 
elements) and operates in-place with an additional memory 
requirement of O(log n) for recursion. 
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B. Hybrid Quick Sort (Median-of-Three + Insertion Sort) 

To enhance the performance of Quick Sort, several 
hybrid optimizations are recognized [3, 7]. The two 
techniques employed are: 

1. Median-of-Three Pivot: select the median of the 
first, middle, and last elements as pivot, performing 3 
extra comparisons but greatly reducing unbalanced 
partitions on sorted/near-sorted data [3]. 

2. Insertion-sort cutoff (k ≤ 10): for subarrays of size 
up to 10, switch to insertion sort (O(k²) but faster for 
small k) [7]. 

This hybrid remains in-place and unstable, maintains 
Θ(n log n) on average, and avoids the Θ(n²) worst case of 
the standard variant while incurring only modest constant 
overhead. 

C. Top-Down Merge Sort (Recursive) 

Merge Sort operates on the principle of dividing an array 
into two equal parts, sorting each part, and then merging them 
back together [1]. In the top-down approach, the recursive 
algorithm follows these steps: 

1. If the length of the array is greater than 1, split the 
array into two halves: left and right. 

2. Recursively call Merge Sort on both the left and right 
sections (until reaching a base case of 1 element). 

3. Merge: Combine the two sorted sections into a single 
sorted array.  

The merging process involves repeatedly comparing the 
leading elements of the two sub-lists (left and right), selecting 
the smaller element, and inserting it into the resulting array. 
Specifically, the algorithm recursively splits the array in 
half until each segment size is ≤ 32, then switches to 
Insertion Sort on those small blocks to reduce merge 
overhead. Merging two sorted halves of lengths p, q takes 
O(p+q) comparisons and moves. Total complexity is Θ(n log 
n) in all cases, with O(n) auxiliary space for the temporary 
buffer. The algorithm is stable and benefits from reduced 
recursion on small subarrays. 

D. Bottom-Up Merge Sort (Iterative) 

As a complement to the recursive approach above, the 
bottom-up variant begins by treating each individual element 
as a sorted run of width w = 1 [5]. On each pass, it doubles the 
run width (w → 2w) and merges adjacent pairs of runs until 
the entire array is one sorted run. Specifically: 

1. For each index i from 0 to n in steps of 2w, identify 
two runs: [i…min(i+w−1, n−1)] and 
[i+w…min(i+2w−1, n−1)]. 

2. If the combined length of a pair of runs is ≤ 32, apply 
Insertion Sort directly to that segment (O(k²) for k 
elements, but very fast on small k). Otherwise, 
perform the standard merge: compare the leading 
elements of both runs, copy the smaller into the 
auxiliary buffer, and advance until one run is 
exhausted, then copy the remainder. 

3. Write the merged buffer back into the original array. 

Repeat this process with w = 1, 2, 4, … until w ≥ n. This 
approach removes recursion entirely and is stable—
guaranteeing Θ(n log n) time in all cases—while using O(n) 
auxiliary space for the merge buffer. Although it remains 
stable with a Θ(n log n) bound, in CPython it typically runs 
slightly slower than the recursive (top-down) version due to 
Python’s loop overhead, but it avoids function-call costs and 
provides a clear iterative flow. 

III. METHOD 

A. Environment and Implementation 

Experiments were conducted in CPython 3.x on a standard 
desktop workstation. The sorting implementations are: 

 Standard Quick Sort: Lomuto partition with the last 
element as pivot. 

 Hybrid Quick Sort: 

1. Median-of-three pivot (first, middle, last 
elements) to avoid worst-case partitions. 

2. Insertion-sort cutoff for subarrays of size ≤ 
10 to reduce recursion overhead. 

 Top-Down and Bottom-Up Merge Sort: both switch 
to insertion sort on subarrays of size ≤ 32 before 
merging to optimize small joins. 

The Quick Sort and hybrid Quick Sort algorithms were 
instrumented to count the number of element comparisons 
during partitioning and insertion sort, and the Merge Sort 
variants likewise track each comparison. Execution time is 
measured via time.perf_counter() (ms resolution) to capture 
wall-clock performance. To ensure identical inputs, each array 
is copied before sorting, and random.seed(42) is set once at the 
very beginning for reproducible random data. 

Recursion limit: CPython’s default recursion limit is 
exceeded by the pure Quick Sort on sorted or reverse-sorted 
arrays when n > 1000 (raising RecursionError). Hence, in 
ascending/descending tests we only run the standard Quick 
Sort up to n = 500, marking larger sizes as “N/A.”. 

Below is the full Python code used for setup and all four 
algorithms: 

import random 

import time 

N_VALUES = [500, 10000, 100000] 

comparison_count = 0 

 

def reset_comparison_count(): 

    global comparison_count 

    comparison_count = 0 

 

def increment_comparison(): 

    global comparison_count 

    comparison_count += 1 
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def quick_sort(arr, low, high): 

    if low < high: 

        pi = partition(arr, low, high) 

        quick_sort(arr, low, pi - 1) 

        quick_sort(arr, pi + 1, high) 

 

def partition(arr, low, high): 

    pivot, i = arr[high], low - 1 

    for j in range(low, high): 

        increment_comparison() 

        if arr[j] <= pivot: 

            i += 1 

            arr[i], arr[j] = arr[j], arr[i] 

    arr[i+1], arr[high] = arr[high], arr[i+1] 

    return i + 1 

 

def insertion_sort(arr, low, high): 

    for i in range(low+1, high+1): 

        key, j = arr[i], i-1 

        while j >= low: 

            increment_comparison() 

            if arr[j] > key: 

                arr[j+1] = arr[j] 

                j -= 1 

            else: 

                break 

        arr[j+1] = key 

 

def median_of_three(arr, low, mid, high): 

    a, b, c = arr[low], arr[mid], arr[high] 

    if (a - b)*(c - a) >= 0: return low 

    if (b - a)*(c - b) >= 0: return mid 

    return high 

 

def modified_quick_sort(arr, low, high): 

    TH = 10 

    if high - low + 1 <= TH: 

        insertion_sort(arr, low, high) 

    else: 

        mid = (low + high)//2 

        m = median_of_three(arr, low, mid, high) 

        arr[m], arr[high] = arr[high], arr[m] 

        pi = partition(arr, low, high) 

        modified_quick_sort(arr, low, pi-1) 

        modified_quick_sort(arr, pi+1, high) 

 

# --- Merge Sort Variants --- 

def merge(arr, aux, left, mid, right): 

    i, j, k = left, mid+1, left 

    while i <= mid and j <= right: 

        increment_comparison() 

        if arr[i] <= arr[j]: 

            aux[k], i = arr[i], i+1 

        else: 

            aux[k], j = arr[j], j+1 

        k += 1 

    for p in (i, j): 

        end = mid if p==i else right 

        while p <= end: 

            aux[k] = arr[p] 

            p, k = p+1, k+1 

    for t in range(left, right+1): 

        arr[t] = aux[t] 

 

def top_down_merge_sort(arr, aux, left, right): 

    TH = 32 

    if right - left + 1 <= TH: 

        insertion_sort(arr, left, right) 

    elif left < right: 

        mid = (left + right)//2 

        top_down_merge_sort(arr, aux, left, mid) 

        top_down_merge_sort(arr, aux, mid+1, right) 

        merge(arr, aux, left, mid, right) 

 

def bottom_up_merge_sort(arr, aux): 

    TH, n, size = 32, len(arr), 1 

    while size < n: 

        for left in range(0, n, 2*size): 

            mid = min(left+size-1, n-1) 

            right = min(left+2*size-1, n-1) 

            if right - left + 1 <= TH: 

                insertion_sort(arr, left, right) 

            else: 

                merge(arr, aux, left, mid, right) 

        size *= 2 

B. Test Data Patterns 

Four types of synthetic data patterns have been prepared:  
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- Random: A sequence of uniformly random integers 
in the range [0, 100,000], generated with 
random.randint(0, 100000) with replacement 
(duplicates may occur). The seed is fixed 
(random.seed(42)) to ensure the same sequence across 
algorithms. This pattern models the typical average-
case input. 

- Sorted Ascending: The data is arranged in increasing 
order (sorted ascending). This represents the worst-
case scenario for standard Quick Sort (with an end 
pivot) as it consistently selects the largest element as 
the pivot, resulting in highly unbalanced partitions. 
This pattern tests the algorithm's performance in the 
worst-case scenario. 

- Sorted Descending: The data is arranged in 
decreasing order (sorted descending). This is also a 
worst-case pattern for Quick Sort (with the smallest 
element always chosen as the pivot), leading to the 
most unbalanced partitions. 

- Partially Sorted: The data is nearly sorted, with only 
a small portion out of place. I built the “partially 
sorted” test array by overwriting the first 95% of 
positions with the ascending values 0,1,2,…,0.95N 
and filling the remaining 5% (the suffix) with 
uniformly random integers. This ensures exactly 95% 
sorted prefix and 5% true randomness. It tests the 
algorithm in nearly-sorted cases, for instance, whether 
Quick Sort experiences performance degradation or if 
Insertion Sort (in a hybrid approach) can be highly 
efficient.  

The data size (n) is varied on a logarithmic scale: 0.5*10^3, 
10^4, up to 10^5 elements. This selection is made to observe 
the growth in time as n increases tenfold (in accordance with 
complexity analysis). The total combination of scenarios is: 4 
algorithms × 4 patterns × 3 sizes = 48 executions (with some 
exceptions such as skipping Quick Sort for 10^4 and 10^5 
sorted as explained). 

C. Evaluation Metrics 

I record two metrics for each run: 

1. Execution Time (ms): measured via 
time.perf_counter() at algorithm start/end, then 
converted from seconds to milliseconds. 

2. Element Comparisons: tracked by a global 
comparison_count, incremented on every comparison 
in partition, merge, and insertion routines. 
comparison_count is reset to zero before each sort. 

Each scenario (algorithm × pattern × size) is executed 
once. The following function runs one trial and handles 
recursion limits: 

def test_sorting_algorithm(data, algorithm): 

    reset_comparison_count() 

    try: 

        start = time.perf_counter() 

        if algorithm in(top_down_merge_sort,  

bottom_up_merge_sort): 

            aux = [0] * len(data) 

            if algorithm is top_down_merge_sort: 

                algorithm(data, aux, 0, len(data)-1) 

            else: 

                algorithm(data, aux) 

        else: 

            algorithm(data, 0, len(data)-1) 

        duration=(time.perf_counter() - start)*1000 

        return duration, comparison_count 

    except RecursionError: 

        return None, None 

 

D. Main Experiment & Result Tabulation 

After all the helpers and test functions above, the 
following main() function orchestrates all the experiments (4 
algorithms × 4 patterns × 3 sizes) and prints the results table: 
def main(): 

 random.seed(42) 

   

 # Store results for all test cases 

 results = { 

     'Random Data': {}, 

     'Ascending Sorted Data': {}, 

     'Descending Sorted Data': {}, 

     'Partially Sorted Data': {} 

 } 

   

 algorithms = [ 

     (quick_sort, "Quick Sort"), 

     (modified_quick_sort, "Quick Sort Hybrid"), 

     (top_down_merge_sort, "Merge Sort Top-Down"), 

     (bottom_up_merge_sort, "Merge Sort Bottom-Up") 

 ] 

      

 for N in N_VALUES: 

    def run_test(test_name, data_generator,  

algorithms, results, N): 

        data = data_generator(N) 

         for algo_func, algo_name in algorithms: 

            if (algo_name == "Quick Sort" and N >  

500 and  

                 test_name in ['Ascending Sorted  

Data', 'Descending Sorted Data']): 

                 if algo_name not in  
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results[test_name]: 

                     results[test_name][algo_name] =  

{} 

                 results[test_name][algo_name][N] =  

(None, None) 

             else: 

                 time_ms, comparisons =  

test_sorting_algorithm(data, algo_func, algo_name) 

                 if algo_name not in  

results[test_name]: 

                     results[test_name][algo_name] =  

{} 

                 results[test_name][algo_name][N] =  

(time_ms, comparisons) 

 

    def generate_random_data(N): 

         return [random.randint(0, 100000) for _ in  

range(N)] 

 

     def generate_ascending_data(N): 

         data = [random.randint(0, 100000) for _ in  

range(N)] 

         data.sort() 

         return data 

 

     def generate_descending_data(N): 

         data = [random.randint(0, 100000) for _ in  

range(N)] 

         data.sort(reverse=True) 

         return data 

 

     def generate_partially_sorted_data(N): 

         data = [random.randint(0, 100000) for _ in  

range(N)] 

         for i in range(0, int(N * 0.95)): 

             data[i] = i 

         return data 

    test_cases = [ 

         ('Random Data', generate_random_data), 

         ('Ascending Sorted Data', 
generate_ascending_data), 

         ('Descending Sorted Data', 
generate_descending_data), 

         ('Partially Sorted Data', 
generate_partially_sorted_data) 

     ] 

 

     # Run all tests 

     for test_name, data_generator in test_cases: 

         run_test(test_name, data_generator,  

algorithms, results, N) 

IV. RESULTS AND DISCUSSION 

Tables I–IV below present the execution times and number 
of comparisons for the four algorithms on each data pattern 
(random, ascending sorted, descending sorted, partially sorted). 
The graphs in Figures 1–4 visualize these comparisons. All 
times are expressed in milliseconds (ms), and the number of 
comparisons is in comparison operation counts. "N/A" 
indicates that the algorithm was not executed because it was 
not feasible (e.g. regular Quick Sort on 100k sorted). 

A. Random Data 

 Table I shows that on random data, Standard Quick 
Sort runs in 0.5 ms (@0.5k), 15.8 ms (@10k) and 210.5 ms 
(@100k) with 4,492, 149,631 and 1,926,378 comparisons, 
respectively, while Hybrid Quick Sort completes in 0.5 ms, 
14.3 ms and 193.0 ms with 4,790, 134,596 and 1,724,918 
comparisons. Top-Down Merge Sort records 0.7 ms, 19.6 ms 
and 280.9 ms with 6,248, 143,391 and 1,863,546 comparisons; 
Bottom-Up Merge Sort 1.1 ms, 29.2 ms and 463.7 ms with 
7,582, 197,953 and 2,318,653 comparisons. These figures 
confirm that Hybrid Quick Sort trims ~11% of comparisons at 
n=100k for only ~8 % slower runtime, while both Merge Sort 
variants maintain stable O(n log n) behavior with higher merge 
overhead. 

 

Table I. Results on Random Data. 

 

Figure 1. Comparison of Quick Sort, Hybrid Quick Sort, 
Top-Down Merge Sort, and Bottom-Up Merge Sort on random 
data. (Left: execution time; Right: number of comparisons; x-
axis scale logarithmic) 

B. Sorted Ascending Data 

Table II shows Standard Quick Sort aborting beyond 
n=500 (16.5 ms/124,750 comps at n=500; N/A thereafter). 
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Hybrid Quick Sort processes sorted input in 10.3 ms (105,941 
comps) at n=10 k and 171.7 ms (1,425,078 comps) at n=100 k. 
Top-Down Merge Sort completes in 11.7 ms (54,640 comps) 
and 190.3 ms (697,264 comps); Bottom-Up Merge Sort in 
18.8 ms (87,077 comps) and 284.5 ms (1,031,155 comps). The 
median-of-three pivot plus insertion cutoff enables Hybrid 
Quick Sort to entirely avoid the O(n²) explosion, while both 
Merge Sorts retain predictable O(n log n) performance.  

 

Table II. Results on Ascending Sorted Data 

 

 Figure 2. Comparison of algorithms on ascending sorted 
data. (Log scale on the y-axis to illustrate extreme differences; 
standard Quick Sort for 100k is not displayed as it did not 
complete). 

C. Sorted Descending Data 

 

 
Table III. Results on Descending Sorted Data 

 

 
Figure 3. Comparison of algorithms on descending sorted 

data. 

Table III shows Standard Quick Sort completes 500 
elements in 13.7 ms (124.750 comparisons) and is “N/A” 
beyond that. Hybrid Quick Sort runs in 22.8 ms (228.677 
comps) at N=10k and 332.3 ms (2.806.321 comps) at N=100k, 
indicating higher cost on descending data but still far better 
than standard. Top-Down Merge Sort finishes in 22.1 ms 
(137.581 comps) and 309.4 ms (1.759.736 comps); Bottom-Up 

Merge Sort in 36.4 ms (224.901 comps) and 525.7 ms 
(2.396.106 comps). Merge Sort remains immune to input order, 
and Hybrid Quick Sort shows moderate adaptability even under 
worst-case patterns. 

From the results of ascending versus descending, it can be 
concluded that hybrid Quick Sort is highly effective on 
ascending sorted data (as insertion sort operates on nearly 
sorted segments – the best-case scenario for insertion), but is 
less effective on descending sorted data (as insertion sort 
consistently encounters the worst segments). Meanwhile, 
Merge Sort is unaffected by the initial order (ascending or 
descending is processed in the same manner). This illustrates a 
trade-off: hybrid Quick Sort is adaptive to nearly ascending 
sorted data, yet fails to capitalize on nearly descending sorted 
data. One potential improvement could involve optimizing 
insertion sort to detect if the input subarray is descending (for 
instance, reverse insertion), but that is beyond the scope of this 
experiment.  

D. Partially Sorted 

Table IV shows Standard Quick Sort in 14.7 ms 
(114,093 comps) at n=500, 144.8 ms (1,527,763 comps) at 
n=10 k, and 1,296.3 ms (12,155,061 comps) at n=100 k, 
reflecting severe degradation. Hybrid Quick Sort, with an 
insertion cutoff, runs in 0.3 ms (3,281 comps), 78.1 ms 
(863,942 comps) and 946.3 ms (9,072,256 comps) at the same 
sizes. Top-Down Merge Sort records 0.3 ms (1,648 comps), 
12.3 ms (58,334 comps) and 170.4 ms (762,219 comps); 
Bottom-Up Merge Sort 0.5 ms (3,156 comps), 18.6 ms 
(91,758 comps) and 249.4 ms (1,098,847 comps). These 
results confirm that Hybrid Quick Sort effectively leverages 
the 95% sorted prefix, while both Merge Sorts maintain 
consistent O(n log n) performance across all patterns. 
 

 
Table IV. Results on Partially Sorted Data 

 

 
 
 
     

 

 
Figure 4. Comparison of algorithms on 5% random data 

(partially sorted). 

V. CONCLUSION 

The comprehensive evaluation across four input 
patterns demonstrates that Hybrid Quick Sort—using a 
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median-of-three pivot and insertion-sort cutoff at 10 
elements—offers the best trade-off between speed and 
robustness. On random data it runs only ~8 % slower than 
Standard Quick Sort while reducing comparisons by ~11%, 
and it handles ascending or descending inputs without 
recursion errors. Both Top-Down and Bottom-Up Merge 
Sort retain predictable O(n log n) complexity with stable 
runtimes, though they incur ~30–50 % higher execution times 
due to merge overhead. 

Standard Quick Sort, while fastest on purely 
random inputs, suffers catastrophic O(n²) degradation on 
sorted data (exceeding recursion depth beyond n = 500). 
Merge Sort variants never degrade but pay a constant penalty 
for merge and auxiliary storage. Therefore, for high-
throughput applications requiring worst-case safety, Hybrid 
Quick Sort is the recommended choice. 

Future work may explore adaptive threshold tuning, 
parallel merge techniques, and cache-friendly optimizations to 
further enhance performance in real-world settings. 
Additionally, this experiment underscores that specific 
implementations and programming languages influence time 
constants: although bottom-up Merge Sort is more cache-
friendly at a low level, in Python, it does not automatically 
outperform the recursive version. Therefore, profiling in the 
target language remains crucial when selecting an algorithm. 
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