
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Sorting Execution Time and Comparison Analysis –
Quick Sort, Hybrid Quick Sort, Top-Down &

Bottom-Up Merge Sort on Synthetic Data

Abdullah Farhan - 13523042
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: farhanjunaedi213@gmail.com, 13523042@std.stei.itb.ac.id

Abstract—This study presents an empirical comparison of four
divide-and-conquer sorting algorithms: Standard Quick Sort,
Hybrid Quick Sort (median-of-three pivot with insertion-sort cutoff
at 10 elements), Top-Down Merge Sort (with insertion cutoff at 32),
and Bottom-Up Merge Sort across four synthetic data patterns
(random, ascending, descending, partially sorted) and three input
sizes (500, 10,000, 100,000). Implementations in CPython 3.x were
instrumented to count element comparisons and measure wall-
clock execution time using time.perf_counter() (ms). Results show
that Standard Quick Sort excels on random data but degrades to
O(n²) on sorted inputs (RecursionError beyond n = 500). Hybrid
Quick Sort mitigates worst-case behavior, reducing comparisons by
~11% at n = 100,000 for only ~8% slower runtimes. Both Merge
Sort variants maintain stable Θ(n log n) performance with higher
constant overheads. These findings illuminate trade-offs between
average-case speed, worst-case robustness, and constant factors,
offering practical guidance for algorithm selection in real-world
scenarios.

Keywords—sorting, divide-and-conquer, Quick Sort, Merge
Sort, median-of-three, insertion-sort cutoff, time complexity,
comparisons

I. INTRODUCTION

Sorting is a foundational task in computer science, where
the choice of algorithm impacts both average-case speed and
worst-case behavior. This study empirically compares four
divide-and-conquer sorting algorithms implemented in
CPython 3.x:

 Standard Quick Sort: uses a Lomuto partition with
the last element as pivot, offering average Θ(n log n)
performance but suffering Θ(n²) worst-case time on
skewed inputs.

 Hybrid Quick Sort: enhances standard Quick Sort by
selecting the median of the first, middle, and last
elements as pivot and switching to insertion sort when
subarray size ≤ 10 to reduce recursion overhead.

 Top-Down Merge Sort: recursively divides the array
until subarrays ≤ 32 elements, then applies insertion
sort before merging; it guarantees Θ(n log n) time and
stability, using O(n) auxiliary space.

 Bottom-Up Merge Sort: iteratively merges runs of
doubling width, with an insertion-sort cutoff at 32,
delivering the same stable Θ(n log n) bound without
recursion.

We evaluate these algorithms on four synthetic data
patterns—random, ascending-sorted, descending-sorted, and
partially sorted (95% sorted prefix)—across input sizes of 500,
10,000, and 100,000 elements. We measure wall-clock
execution time (time.perf_counter(), ms) and count element
comparisons to reveal trade-offs between constant factors,
average-case speed, and worst-case robustness.

This paper is organized as follows: Section II reviews
theoretical backgrounds; Section III details the implementation
and experimental setup; Section IV presents and analyzes
results; Section V concludes and suggests future work.

II. THEORETICAL BASIS

A. Quick Sort (Regular)

Standard Quick Sort uses a Lomuto partition scheme with
the last element as pivot [6]. During partitioning, all elements ≤
pivot go left, the rest go right, then recursion sorts each side.
The average time is Θ(n log n) (T(n) ≈ 2 T(n/2) + O(n)), but a
worst-case pivot (always smallest/largest) yields Θ(n²)
comparisons due to unbalanced splits [1]. The algorithm is in-
place, not stable, and requires O(log n) auxiliary stack space.

In this study, the conventional Quick Sort is implemented
with the pivot consistently taking the last element of the
subarray. The partitioning scheme employed is the Lomuto
partition, where the pivot element (the last one) is swapped to
ensure it is positioned at the end of the left partition. The
number of comparisons counted includes each instance where
the algorithm compares two elements (for example, during the
partitioning loop when comparing an element with the pivot).
Quick Sort is not stable (it does not maintain the order of equal
elements) and operates in-place with an additional memory
requirement of O(log n) for recursion.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

B. Hybrid Quick Sort (Median-of-Three + Insertion Sort)

To enhance the performance of Quick Sort, several
hybrid optimizations are recognized [3, 7]. The two
techniques employed are:

1. Median-of-Three Pivot: select the median of the
first, middle, and last elements as pivot, performing 3
extra comparisons but greatly reducing unbalanced
partitions on sorted/near-sorted data [3].

2. Insertion-sort cutoff (k ≤ 10): for subarrays of size
up to 10, switch to insertion sort (O(k²) but faster for
small k) [7].

This hybrid remains in-place and unstable, maintains
Θ(n log n) on average, and avoids the Θ(n²) worst case of
the standard variant while incurring only modest constant
overhead.

C. Top-Down Merge Sort (Recursive)

Merge Sort operates on the principle of dividing an array
into two equal parts, sorting each part, and then merging them
back together [1]. In the top-down approach, the recursive
algorithm follows these steps:

1. If the length of the array is greater than 1, split the
array into two halves: left and right.

2. Recursively call Merge Sort on both the left and right
sections (until reaching a base case of 1 element).

3. Merge: Combine the two sorted sections into a single
sorted array.

The merging process involves repeatedly comparing the
leading elements of the two sub-lists (left and right), selecting
the smaller element, and inserting it into the resulting array.
Specifically, the algorithm recursively splits the array in
half until each segment size is ≤ 32, then switches to
Insertion Sort on those small blocks to reduce merge
overhead. Merging two sorted halves of lengths p, q takes
O(p+q) comparisons and moves. Total complexity is Θ(n log
n) in all cases, with O(n) auxiliary space for the temporary
buffer. The algorithm is stable and benefits from reduced
recursion on small subarrays.

D. Bottom-Up Merge Sort (Iterative)

As a complement to the recursive approach above, the
bottom-up variant begins by treating each individual element
as a sorted run of width w = 1 [5]. On each pass, it doubles the
run width (w → 2w) and merges adjacent pairs of runs until
the entire array is one sorted run. Specifically:

1. For each index i from 0 to n in steps of 2w, identify
two runs: [i…min(i+w−1, n−1)] and
[i+w…min(i+2w−1, n−1)].

2. If the combined length of a pair of runs is ≤ 32, apply
Insertion Sort directly to that segment (O(k²) for k
elements, but very fast on small k). Otherwise,
perform the standard merge: compare the leading
elements of both runs, copy the smaller into the
auxiliary buffer, and advance until one run is
exhausted, then copy the remainder.

3. Write the merged buffer back into the original array.

Repeat this process with w = 1, 2, 4, … until w ≥ n. This
approach removes recursion entirely and is stable—
guaranteeing Θ(n log n) time in all cases—while using O(n)
auxiliary space for the merge buffer. Although it remains
stable with a Θ(n log n) bound, in CPython it typically runs
slightly slower than the recursive (top-down) version due to
Python’s loop overhead, but it avoids function-call costs and
provides a clear iterative flow.

III. METHOD

A. Environment and Implementation

Experiments were conducted in CPython 3.x on a standard
desktop workstation. The sorting implementations are:

 Standard Quick Sort: Lomuto partition with the last
element as pivot.

 Hybrid Quick Sort:

1. Median-of-three pivot (first, middle, last
elements) to avoid worst-case partitions.

2. Insertion-sort cutoff for subarrays of size ≤
10 to reduce recursion overhead.

 Top-Down and Bottom-Up Merge Sort: both switch
to insertion sort on subarrays of size ≤ 32 before
merging to optimize small joins.

The Quick Sort and hybrid Quick Sort algorithms were
instrumented to count the number of element comparisons
during partitioning and insertion sort, and the Merge Sort
variants likewise track each comparison. Execution time is
measured via time.perf_counter() (ms resolution) to capture
wall-clock performance. To ensure identical inputs, each array
is copied before sorting, and random.seed(42) is set once at the
very beginning for reproducible random data.

Recursion limit: CPython’s default recursion limit is
exceeded by the pure Quick Sort on sorted or reverse-sorted
arrays when n > 1000 (raising RecursionError). Hence, in
ascending/descending tests we only run the standard Quick
Sort up to n = 500, marking larger sizes as “N/A.”.

Below is the full Python code used for setup and all four
algorithms:

import random

import time

N_VALUES = [500, 10000, 100000]

comparison_count = 0

def reset_comparison_count():

 global comparison_count

 comparison_count = 0

def increment_comparison():

 global comparison_count

 comparison_count += 1

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

def quick_sort(arr, low, high):

 if low < high:

 pi = partition(arr, low, high)

 quick_sort(arr, low, pi - 1)

 quick_sort(arr, pi + 1, high)

def partition(arr, low, high):

 pivot, i = arr[high], low - 1

 for j in range(low, high):

 increment_comparison()

 if arr[j] <= pivot:

 i += 1

 arr[i], arr[j] = arr[j], arr[i]

 arr[i+1], arr[high] = arr[high], arr[i+1]

 return i + 1

def insertion_sort(arr, low, high):

 for i in range(low+1, high+1):

 key, j = arr[i], i-1

 while j >= low:

 increment_comparison()

 if arr[j] > key:

 arr[j+1] = arr[j]

 j -= 1

 else:

 break

 arr[j+1] = key

def median_of_three(arr, low, mid, high):

 a, b, c = arr[low], arr[mid], arr[high]

 if (a - b)*(c - a) >= 0: return low

 if (b - a)*(c - b) >= 0: return mid

 return high

def modified_quick_sort(arr, low, high):

 TH = 10

 if high - low + 1 <= TH:

 insertion_sort(arr, low, high)

 else:

 mid = (low + high)//2

 m = median_of_three(arr, low, mid, high)

 arr[m], arr[high] = arr[high], arr[m]

 pi = partition(arr, low, high)

 modified_quick_sort(arr, low, pi-1)

 modified_quick_sort(arr, pi+1, high)

--- Merge Sort Variants ---

def merge(arr, aux, left, mid, right):

 i, j, k = left, mid+1, left

 while i <= mid and j <= right:

 increment_comparison()

 if arr[i] <= arr[j]:

 aux[k], i = arr[i], i+1

 else:

 aux[k], j = arr[j], j+1

 k += 1

 for p in (i, j):

 end = mid if p==i else right

 while p <= end:

 aux[k] = arr[p]

 p, k = p+1, k+1

 for t in range(left, right+1):

 arr[t] = aux[t]

def top_down_merge_sort(arr, aux, left, right):

 TH = 32

 if right - left + 1 <= TH:

 insertion_sort(arr, left, right)

 elif left < right:

 mid = (left + right)//2

 top_down_merge_sort(arr, aux, left, mid)

 top_down_merge_sort(arr, aux, mid+1, right)

 merge(arr, aux, left, mid, right)

def bottom_up_merge_sort(arr, aux):

 TH, n, size = 32, len(arr), 1

 while size < n:

 for left in range(0, n, 2*size):

 mid = min(left+size-1, n-1)

 right = min(left+2*size-1, n-1)

 if right - left + 1 <= TH:

 insertion_sort(arr, left, right)

 else:

 merge(arr, aux, left, mid, right)

 size *= 2

B. Test Data Patterns

Four types of synthetic data patterns have been prepared:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

- Random: A sequence of uniformly random integers
in the range [0, 100,000], generated with
random.randint(0, 100000) with replacement
(duplicates may occur). The seed is fixed
(random.seed(42)) to ensure the same sequence across
algorithms. This pattern models the typical average-
case input.

- Sorted Ascending: The data is arranged in increasing
order (sorted ascending). This represents the worst-
case scenario for standard Quick Sort (with an end
pivot) as it consistently selects the largest element as
the pivot, resulting in highly unbalanced partitions.
This pattern tests the algorithm's performance in the
worst-case scenario.

- Sorted Descending: The data is arranged in
decreasing order (sorted descending). This is also a
worst-case pattern for Quick Sort (with the smallest
element always chosen as the pivot), leading to the
most unbalanced partitions.

- Partially Sorted: The data is nearly sorted, with only
a small portion out of place. I built the “partially
sorted” test array by overwriting the first 95% of
positions with the ascending values 0,1,2,…,0.95N
and filling the remaining 5% (the suffix) with
uniformly random integers. This ensures exactly 95%
sorted prefix and 5% true randomness. It tests the
algorithm in nearly-sorted cases, for instance, whether
Quick Sort experiences performance degradation or if
Insertion Sort (in a hybrid approach) can be highly
efficient.

The data size (n) is varied on a logarithmic scale: 0.5*10^3,
10^4, up to 10^5 elements. This selection is made to observe
the growth in time as n increases tenfold (in accordance with
complexity analysis). The total combination of scenarios is: 4
algorithms × 4 patterns × 3 sizes = 48 executions (with some
exceptions such as skipping Quick Sort for 10^4 and 10^5
sorted as explained).

C. Evaluation Metrics

I record two metrics for each run:

1. Execution Time (ms): measured via
time.perf_counter() at algorithm start/end, then
converted from seconds to milliseconds.

2. Element Comparisons: tracked by a global
comparison_count, incremented on every comparison
in partition, merge, and insertion routines.
comparison_count is reset to zero before each sort.

Each scenario (algorithm × pattern × size) is executed
once. The following function runs one trial and handles
recursion limits:

def test_sorting_algorithm(data, algorithm):

 reset_comparison_count()

 try:

 start = time.perf_counter()

 if algorithm in(top_down_merge_sort,

bottom_up_merge_sort):

 aux = [0] * len(data)

 if algorithm is top_down_merge_sort:

 algorithm(data, aux, 0, len(data)-1)

 else:

 algorithm(data, aux)

 else:

 algorithm(data, 0, len(data)-1)

 duration=(time.perf_counter() - start)*1000

 return duration, comparison_count

 except RecursionError:

 return None, None

D. Main Experiment & Result Tabulation

After all the helpers and test functions above, the
following main() function orchestrates all the experiments (4
algorithms × 4 patterns × 3 sizes) and prints the results table:
def main():

 random.seed(42)

 # Store results for all test cases

 results = {

 'Random Data': {},

 'Ascending Sorted Data': {},

 'Descending Sorted Data': {},

 'Partially Sorted Data': {}

 }

 algorithms = [

 (quick_sort, "Quick Sort"),

 (modified_quick_sort, "Quick Sort Hybrid"),

 (top_down_merge_sort, "Merge Sort Top-Down"),

 (bottom_up_merge_sort, "Merge Sort Bottom-Up")

]

 for N in N_VALUES:

 def run_test(test_name, data_generator,

algorithms, results, N):

 data = data_generator(N)

 for algo_func, algo_name in algorithms:

 if (algo_name == "Quick Sort" and N >

500 and

 test_name in ['Ascending Sorted

Data', 'Descending Sorted Data']):

 if algo_name not in

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

results[test_name]:

 results[test_name][algo_name] =

{}

 results[test_name][algo_name][N] =

(None, None)

 else:

 time_ms, comparisons =

test_sorting_algorithm(data, algo_func, algo_name)

 if algo_name not in

results[test_name]:

 results[test_name][algo_name] =

{}

 results[test_name][algo_name][N] =

(time_ms, comparisons)

 def generate_random_data(N):

 return [random.randint(0, 100000) for _ in

range(N)]

 def generate_ascending_data(N):

 data = [random.randint(0, 100000) for _ in

range(N)]

 data.sort()

 return data

 def generate_descending_data(N):

 data = [random.randint(0, 100000) for _ in

range(N)]

 data.sort(reverse=True)

 return data

 def generate_partially_sorted_data(N):

 data = [random.randint(0, 100000) for _ in

range(N)]

 for i in range(0, int(N * 0.95)):

 data[i] = i

 return data

 test_cases = [

 ('Random Data', generate_random_data),

 ('Ascending Sorted Data',
generate_ascending_data),

 ('Descending Sorted Data',
generate_descending_data),

 ('Partially Sorted Data',
generate_partially_sorted_data)

]

 # Run all tests

 for test_name, data_generator in test_cases:

 run_test(test_name, data_generator,

algorithms, results, N)

IV. RESULTS AND DISCUSSION

Tables I–IV below present the execution times and number
of comparisons for the four algorithms on each data pattern
(random, ascending sorted, descending sorted, partially sorted).
The graphs in Figures 1–4 visualize these comparisons. All
times are expressed in milliseconds (ms), and the number of
comparisons is in comparison operation counts. "N/A"
indicates that the algorithm was not executed because it was
not feasible (e.g. regular Quick Sort on 100k sorted).

A. Random Data

 Table I shows that on random data, Standard Quick
Sort runs in 0.5 ms (@0.5k), 15.8 ms (@10k) and 210.5 ms
(@100k) with 4,492, 149,631 and 1,926,378 comparisons,
respectively, while Hybrid Quick Sort completes in 0.5 ms,
14.3 ms and 193.0 ms with 4,790, 134,596 and 1,724,918
comparisons. Top-Down Merge Sort records 0.7 ms, 19.6 ms
and 280.9 ms with 6,248, 143,391 and 1,863,546 comparisons;
Bottom-Up Merge Sort 1.1 ms, 29.2 ms and 463.7 ms with
7,582, 197,953 and 2,318,653 comparisons. These figures
confirm that Hybrid Quick Sort trims ~11% of comparisons at
n=100k for only ~8 % slower runtime, while both Merge Sort
variants maintain stable O(n log n) behavior with higher merge
overhead.

Table I. Results on Random Data.

Figure 1. Comparison of Quick Sort, Hybrid Quick Sort,
Top-Down Merge Sort, and Bottom-Up Merge Sort on random
data. (Left: execution time; Right: number of comparisons; x-
axis scale logarithmic)

B. Sorted Ascending Data

Table II shows Standard Quick Sort aborting beyond
n=500 (16.5 ms/124,750 comps at n=500; N/A thereafter).

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Hybrid Quick Sort processes sorted input in 10.3 ms (105,941
comps) at n=10 k and 171.7 ms (1,425,078 comps) at n=100 k.
Top-Down Merge Sort completes in 11.7 ms (54,640 comps)
and 190.3 ms (697,264 comps); Bottom-Up Merge Sort in
18.8 ms (87,077 comps) and 284.5 ms (1,031,155 comps). The
median-of-three pivot plus insertion cutoff enables Hybrid
Quick Sort to entirely avoid the O(n²) explosion, while both
Merge Sorts retain predictable O(n log n) performance.

Table II. Results on Ascending Sorted Data

 Figure 2. Comparison of algorithms on ascending sorted
data. (Log scale on the y-axis to illustrate extreme differences;
standard Quick Sort for 100k is not displayed as it did not
complete).

C. Sorted Descending Data

Table III. Results on Descending Sorted Data

Figure 3. Comparison of algorithms on descending sorted

data.

Table III shows Standard Quick Sort completes 500
elements in 13.7 ms (124.750 comparisons) and is “N/A”
beyond that. Hybrid Quick Sort runs in 22.8 ms (228.677
comps) at N=10k and 332.3 ms (2.806.321 comps) at N=100k,
indicating higher cost on descending data but still far better
than standard. Top-Down Merge Sort finishes in 22.1 ms
(137.581 comps) and 309.4 ms (1.759.736 comps); Bottom-Up

Merge Sort in 36.4 ms (224.901 comps) and 525.7 ms
(2.396.106 comps). Merge Sort remains immune to input order,
and Hybrid Quick Sort shows moderate adaptability even under
worst-case patterns.

From the results of ascending versus descending, it can be
concluded that hybrid Quick Sort is highly effective on
ascending sorted data (as insertion sort operates on nearly
sorted segments – the best-case scenario for insertion), but is
less effective on descending sorted data (as insertion sort
consistently encounters the worst segments). Meanwhile,
Merge Sort is unaffected by the initial order (ascending or
descending is processed in the same manner). This illustrates a
trade-off: hybrid Quick Sort is adaptive to nearly ascending
sorted data, yet fails to capitalize on nearly descending sorted
data. One potential improvement could involve optimizing
insertion sort to detect if the input subarray is descending (for
instance, reverse insertion), but that is beyond the scope of this
experiment.

D. Partially Sorted

Table IV shows Standard Quick Sort in 14.7 ms
(114,093 comps) at n=500, 144.8 ms (1,527,763 comps) at
n=10 k, and 1,296.3 ms (12,155,061 comps) at n=100 k,
reflecting severe degradation. Hybrid Quick Sort, with an
insertion cutoff, runs in 0.3 ms (3,281 comps), 78.1 ms
(863,942 comps) and 946.3 ms (9,072,256 comps) at the same
sizes. Top-Down Merge Sort records 0.3 ms (1,648 comps),
12.3 ms (58,334 comps) and 170.4 ms (762,219 comps);
Bottom-Up Merge Sort 0.5 ms (3,156 comps), 18.6 ms
(91,758 comps) and 249.4 ms (1,098,847 comps). These
results confirm that Hybrid Quick Sort effectively leverages
the 95% sorted prefix, while both Merge Sorts maintain
consistent O(n log n) performance across all patterns.

Table IV. Results on Partially Sorted Data

Figure 4. Comparison of algorithms on 5% random data

(partially sorted).

V. CONCLUSION

The comprehensive evaluation across four input
patterns demonstrates that Hybrid Quick Sort—using a

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

median-of-three pivot and insertion-sort cutoff at 10
elements—offers the best trade-off between speed and
robustness. On random data it runs only ~8 % slower than
Standard Quick Sort while reducing comparisons by ~11%,
and it handles ascending or descending inputs without
recursion errors. Both Top-Down and Bottom-Up Merge
Sort retain predictable O(n log n) complexity with stable
runtimes, though they incur ~30–50 % higher execution times
due to merge overhead.

Standard Quick Sort, while fastest on purely
random inputs, suffers catastrophic O(n²) degradation on
sorted data (exceeding recursion depth beyond n = 500).
Merge Sort variants never degrade but pay a constant penalty
for merge and auxiliary storage. Therefore, for high-
throughput applications requiring worst-case safety, Hybrid
Quick Sort is the recommended choice.

Future work may explore adaptive threshold tuning,
parallel merge techniques, and cache-friendly optimizations to
further enhance performance in real-world settings.
Additionally, this experiment underscores that specific
implementations and programming languages influence time
constants: although bottom-up Merge Sort is more cache-
friendly at a low level, in Python, it does not automatically
outperform the recursive version. Therefore, profiling in the
target language remains crucial when selecting an algorithm.

ACKNOWLEDGMENTS

I would like to thank the following for their support and
guidance:
1. Dr. Nur Ulfa Maulidevi, S.T., M.Sc., my Algorithm

Strategy course instructor, for invaluable guidance and
feedback;

2. Dr. Ir. Rinaldi Munir, M.T., for providing essential
resources via his website, which greatly aided my
literature review;

3. My family and friends for their continuous
encouragement.

Finally, I am grateful to the Almighty for His blessings and
strength throughout this research.

CODE LINK AT GITHUB

https://github.com/Farhanabd05/makalah-stima-sorting

REFERENCES
[1] R. Sedgewick, *Algorithms in C*, 3rd ed., Addison-Wesley, 1990, pp.

123–130.

[2] C. A. R. Hoare, “Quicksort,” *The Computer Journal*, vol. 5, no. 1, pp.
10–16, 1962.

[3] “Advanced Quick Sort (Hybrid Algorithm),” *GeeksforGeeks*.
[Online]. Available: https://www.geeksforgeeks.org/advanced-quick-
sort-hybrid-algorithm/ [Accessed: Jun. 20, 2025].

[4] “Why is the optimal cut-off for switching from Quicksort to Insertion
sort?” *Computer Science Stack Exchange*. [Online]. Available:
https://cs.stackexchange.com/questions/37956/why-is-the-optimal-cut-
off-for-switching-from-quicksort-to-insertion-sort [Accessed: Jun. 20,
2025].

[5] “Mergesort – Why top down merge sort is popular for learning, while
most libraries use bottom up?” *Computer Science Stack Exchange*.
[Online]. Available: https://cs.stackexchange.com/questions/75216/why-
top-down-merge-sort-is-popular-for-learning-while-most-libraries-use-
bottom [Accessed: Jun. 20, 2025].

[6] T. Cormen, C. Leiserson, R. Rivest, C. Stein, *Introduction to
Algorithms*, 3rd ed., MIT Press, 2009 [Accessed: Jun. 20, 2025].

[7] J. L. Bentley and M. D. McIlroy, “Engineering a sort function,”
Software: Practice and Experience, vol. 23, no. 11, pp. 1249–1265,
1993 [Accessed: Jun. 21, 2025].

STATEMENT
I hereby declare that the paper I wrote is my own writing, not
an adaptation or translation of someone else's paper, and is not
plagiarized.

Bandung, 1 Juni 2025

Abdullah Farhan 13523042

